On parabolic problems with non-Lipschitz nonlinearity

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Lipschitz Semi-Infinite Optimization Problems Involving Local Cone Approximation

In this paper we study the nonsmooth semi-infinite programming problem with inequality constraints. First, we consider the notions of local cone approximation $Lambda$ and $Lambda$-subdifferential. Then, we derive the Karush-Kuhn-Tucker optimality conditions under the Abadie and the Guignard constraint qualifications.

متن کامل

Elliptic and Parabolic Equations with Nonstandard Nonlinearity

• Mikhail Surnachev, Keldish Institute of Applied Mathematics Moscow Parabolic Equations Degenerating on a Part of the Domain ABSTRACT. In this work we study nonlinear parabolic equations of the p-Laplace type degenerating on a part of the domain. The degeneration is controlled by a small parameter. For the fixed value of this parameter, the results we discuss fall within the scope of E. DiBene...

متن کامل

Dissipative backward stochastic differential equations with locally Lipschitz nonlinearity

In this paper we study a class of backward stochastic differential equations (BSDEs) of the form dYt = −AYtdt−f0(t, Yt)dt−f1(t, Yt, Zt)dt+ZtdWt, 0 ≤ t ≤ T ; YT = ξ in an infinite dimensional Hilbert space H , where the unbounded operator A is sectorial and dissipative and the nonlinearity f0(t, y) is dissipative and defined for y only taking values in a subspace of H . A typical example is prov...

متن کامل

Singularity Perturbed Parabolic Problems on Non-rectangular Domains

A singularly perturbed time-dependent convection-diffusion problem is examined on non-rectangular domains. The nature of the boundary and interior layers that arise depends on the geometry of the domains. For problems with different types of layers, various numerical methods are constructed to resolve the layers in the solutions and the numerical solutions are shown to converge independently of...

متن کامل

Chebyshev pseudospectral collocation for parabolic problems with non- constant coefficients

This paper analyses a Chebyshev pseudospectral collocation semidiscrete (continuous in time) discretization of a variable coefficient parabolic problem. Optimal stability and convergence estimates are given. The analysis is based on an approximation property concerning the GaussLobatto-Chebyshev interpolation operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2008

ISSN: 1072-3374,1573-8795

DOI: 10.1007/s10958-008-9143-y